A discriminative performance metric for GMM-UBM speaker identification

نویسندگان

  • Omid Dehzangi
  • Bin Ma
  • Chng Eng Siong
  • Haizhou Li
چکیده

Gaussian mixture modeling with universal background model (GMM-UBM) is a widely used method for speaker identification, where the GMM model is used to characterize a specific speaker’s voice. The estimation of model parameters is generally performed based on the maximum likelihood (ML) or maximum a posteriori (MAP) criteria. In this way, interspeaker information that discriminates between different speakers is not taken into account. To overcome this limitation, we design a discriminative performance metric to capture interspeaker variabilities leading to improve the classification capability of speaker models. A learning algorithm is presented to tune the Gaussian mixture weights by optimizing the frame classification accuracy of GMM classifiers. We design an objective function to directly relate the model parameters to the performance metric. The comparative study of the proposed method is done with the basic GMM-UBM system on the 2001 NIST SRE corpus. Experimental results demonstrate that the proposed learning algorithm considerably improves the GMM-UBM system on speaker identification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving GMM-UBM speaker verification using discriminative feedback adaptation

The Gaussian Mixture Model Universal Background Model (GMM-UBM) system is one of the predominant approaches for text-independent speaker verification, because both the target speaker model and the impostor model (UBM) have generalization ability to handle “unseen” acoustic patterns. However, since GMM-UBM uses a common anti-model, namely UBM, for all target speakers, it tends to be weak in reje...

متن کامل

Discriminative adaptation for speaker verification

Speaker verification is a binary classification task to determine whether a claimed speaker uttered a phrase. Current approaches to speaker verification tasks typically involve adapting a general speaker Universal Background Model (UBM), normally a Gaussian Mixture Model (GMM), to model a particular speaker. Verification is then performed by comparing the likelihoods from the speaker model to t...

متن کامل

In-set/out-of-set speaker identification based on discriminative speech frame selection

In this paper, we propose a novel discriminative speech frame selection (DSFS) scheme for the problem of in-set/out-of-set speaker identification, which seeks to decrease the similarity between speaker models and background model (or antispeaker model), and increase the accuracy of speaker identification. The working scheme of DSFS consists of two steps: speech frame analysis and discriminative...

متن کامل

Fusing Generatve and Discriminative Ubm-based Systems for Speaker Verification

In the past few years, discriminative approaches to perform speaker detection have shown good results and an increasing interest. Among these methods, SVM based systems have lots of advantages, especially their ability to deal with a high dimension feature space. Generative systems such as UBM-GMM systems show the greatest performance among other systems in speaker verification tasks. Combinati...

متن کامل

Maximum Entropy Based Data Selection for Speaker Recognition

This paper presents the data selection method for speaker recognition. Since there is no promise that more data guarantee better results, the way of data selection becomes important. In the GMM-UBM speaker recognition, the UBM is trained to represent the speaker-independent distribution of acoustic features while the GMM speaker model is tailored for a specific speaker. In this study of data se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010